Home > Industry Laser Equipment > Fiber Lasers: The Ultimate Guide - Baison

Fiber Lasers: The Ultimate Guide - Baison

Author: Molly

Jul. 29, 2024

36 0

Fiber Lasers: The Ultimate Guide - Baison

Modern fiber lasers are the result of a collective effort of a hundred years worth of research and development. In just a few short years, these laser systems have gone from industrial-grade tools to widespread everyday machines used by hobbyists and small business owners.

For more information, please visit Cylion.

This article provides an in-depth look into fiber laser technology, its inner workings, applications, and benefits.

Let&#;s dive into it.

What is Fiber Laser Technology?

Fiber laser technology uses an optical fiber cable made of silica glass as the gain medium to boost the strength of the laser.

The optical fiber is exposed to a high-intensity light source, and as light rays pass through the cable, they refract internally and get amplified.

Additional reflectors at the end of the fiber cable further reflect and amplify the laser beam.

The wattage of the light source determines the strength of a fiber laser. High-wattage lamps pump light into the gain medium, which leads to greater laser penetration.

Due to the flexibility of fiber laser systems, it has seen widespread adoption in the manufacturing industry. You will see fiber laser machines commonly used for cutting, welding, making, cleaning, and drilling metals, as well as non-metals.

The Fascinating History of Fiber Laser

The invention of the modern fiber laser is a complex and fascinating story that spans nearly a hundred years and with the collaboration of over a dozen scientific minds. Albert Einstein&#;s research into simulated light emissions became the basis for modern lasers. Einstein proposed the theory that photos of light can trigger atoms to release other photons.

Four decades after Einstein () published his paper, Gordon Gould presented the basic structure of visible light amplification.

Gould was the first person to use the acronym for the technology in his work notebook, calling it a LASER: Light Amplification by Stimulated Emission of Radiation.

While Gould formed the basis of the laser, Ted Maiman went on to construct the first functional laser.

Just a few years after Maiman&#;s achievement, Elias Snitzer, who was then working on fiber optics, created a system to combine the two technologies, creating the first fiber laser system in .

Optical fibers were still very difficult to fabricate in the 60s, and without high-quality fiber cables, the fiber laser would not be competitive to gas power lasers.

Over the next 30 years, several scientists, including Snitzer, would improve the design and introduce high-purity optical fibers, double-clad fiber, and rare earth metal doped fiber cables.

In the late s, Italian company Salvagnini would finally bring a fully functional fiber laser cutting machine to the market. Ever since then, fiber lasers have been rapidly and steadily improving to the point of overtaking CO2 lasers.

Following the sale of the first fiber laser cutter, improvements in manufacturing technology, CNC performance, and fiber optics have further enhanced the capabilities of fiber lasers.

How Do Fiber Lasers Work?&#; An Easy-to-follow Guide

Modern laser beams are a commutation of years of research and decades of improvements in the manufacturing process.

Many see fiber laser systems as a complex and daunting technology. But the basic operating principles are very easy to understand.

Here we break down the basic steps involved in fiber laser operation.

Step 1 &#; Initiating the Light Source

The first element of a fiber laser is the light source. Modern fiber lasers use a semiconductor diode for illumination. Higher wattage will result in a high-power fiber laser but at the cost of excess heat generation at the light source.

A robust cooling system is necessary when dealing with high-output power concentrated in such a small space.

Lasers used for manufacturing in industrial environments are incredibly powerful, and a standard light source is often insufficient for such systems.

Some fiber lasers bypass the overheating issues by using multiple smaller pump laser diodes to fill the optical fiber cable with light.

Step 2 &#; Pump Light into the Optical Fiber Core

Once your light source is initialized, it must be directed toward the optical fiber cable. As light exits the diode source, it scatters in all directions.

Hence opaque thicker materials surround the diode to prevent the light from escaping in unwanted directions. Then the only exit point for the light would be in the direction of the optical fiber.

The process of directing more and more light into a single optical fiber is called pumping.

However, the optical fibers are prone to light leakage as well. If you pump light into a naked fiber, most of the energy will dissipate to the surrounding. So the fibers must be clad in a thin and flexible material, preventing light leakage and improving the fiber&#;s refractive index. The fibers combine with cladding material to form a cable, and the cable&#;s core is the optical fiber.

Step 3 &#; Light is Converted into a Laser Light Beam

When light enters the fiber cable, it is still too weak and unfocused. But as the light packets (photons) pass through the fiber, they are refracted internally and concentrated. Light continuously bounces inside the fiber until a laser beam is formed.

Step 4 &#; Laser Light is Amplified Internally

Even after forming the laser light into a cohesive beam, the power output is still relatively low. So the laser must now be amplified until the beam quality improves significantly. Amplification occurs in three ways.

  1. First, fiber optic cables are doped with rare earth metals that get excited by the laser light and release more photons. These extra photons provide additional energy to the laser beam.
  2. Next, the fiber cable is coiled to increase the internal refractions of the laser light exponentially.
  3. Finally, reflective mirrors at the end of the cable run prevent light from returning to the laser diodes or prematurely exiting the optical fiber.

Step 5 &#; Wavelength Management

An optional step for optimizing fiber laser output is to control the wavelength (frequency) of the final beam. The stimulated emission from molecules is at varying wavelengths and can affect the quality of the laser output. To control the beam output, fiber Bragg gratings are needed.

Fiber Bragg gratings are a series of deflectors constructed inside the optical fiber that block unwanted wavelengths of light and only allow the desired ones to pass through.

Step 6 &#; A Lens System Shapes and Focuses the Laser Light

After the laser diodes pump light into the core of the fiber-optic cable and a laser beam is formed, it is strong enough to melt or even cut materials. But at this point, the light is too unfocused, and the spot diameter of the laser is too large.

A series of high-quality lenses shape the laser beam into a smaller point (spot) and help manage other laser parameters like the focal length. Higher-quality lenses result in better beam quality.

Step 7 &#; Electronic Deflectors Change the Direction of the Laser Light

After passing through the gain medium and the lenses, the laser beam is ready for any application. But controlling the position and direction of the laser beam is still a challenge.

The solution is a set of electronically controlled deflectors (mirrors) at the end of the laser beam. As light hits these deflectors, a computer-controlled system changes the angle of the deflector to control the fiber laser&#;s direction.

The sensitive parts inside the fiber laser cavity aren&#;t designed to be moved around. Using this method, the fiber laser can stay stationary while moving only the laser beam.

7 Key Benefits of Fiber Laser Machines for Your Business

Here is a brief list of the most important benefits that fiber laser machines bring to the table.

High Precision

One of fiber lasers&#; most significant improvements over the older CO2 lasers is the incredible laser precision. This higher precision is achieved by the combination of smaller spot diameters and advancements in CNC (computer numerical control).

Fiber lasers can now accurately and precisely move to a th of an inch. (0.001 in. or ~25 microns).

Energy Efficiency

Laser electrical efficiency is measured based on the difference between power drawn from the wall socket and the power output of the laser beams.

Fiber lasers are incredibly energy efficient and can convert up to 35% of the input electricity into laser energy. This is slightly higher than neodymium lasers and nearly twice the efficiency of CO2.

Compact Size

A significant contributor to size reduction for fiber lasers is the lack of a laser tube. Older CO2 lasers use a bulky glass tube that houses a gas mixture used as the gain medium.

Additionally, using energy-efficient diode lasers to pump light into the laser medium leads to smaller cooling systems inside the fiber laser cavity.

Finally, the ability to coil the fiber cable inside the machine has led to higher-power fiber lasers in the same smaller package.

Versatility

Fiber lasers are versatile tools that can be deployed in different manufacturing systems. For example, a fiber laser cutting machine can also laser engrave and mark.

By reducing the focus of the laser beam or using pulsed fiber lasers, you can decrease the energy output and use the laser for non-cutting applications.

Outside the manufacturing sector, fiber lasers are used in medical equipment, engineering measuring tools, and many more.

Long Lifespan

Another excellent selling point for fiber lasers is their long life and durability. A standard fiber laser is designed for over 30,000 hours of operation.

This is nearly 15 times longer than a traditional gas-powered laser machine. Due to their high durability, fiber lasers also require less frequent maintenance.

Material Compatibility

Fiber lasers are primarily recommended for metalwork. You can cut, mark, clean, engrave, and drill through sheet metal and even thicker plates using fiber lasers.

However, fiber lasers provide limited compatibility with non-metals. Limited compatibility means the laser can engrave and mark but will struggle to cut the material.

You can use lower-power fiber lasers for marking and cutting textiles, leather, wood, etc.

Lower Operational Costs

Fiber laser machines offer significant savings through higher energy efficiency, lower power consumption, and maintenance-free operation.

Your annual cost per part will be considerably lower in the long term than traditional gas-powered laser solutions.

5 Amazing Applications of Fiber Lasers

Non-manufacturing laser applications are best suited to low-powered diode lasers. Although fiber lasers are used in medical fields, Nd: YAG lasers dominate that field.

Because the high power output by fiber lasers can reach upwards of tens of kilowatts, they are favored for their manufacturing capabilities. Here are five of the most common fiber laser applications.

Laser Cutting

Metal cutters are one of the most widespread applications for fiber laser systems. Most modern metal manufacturing involves the manipulation of sheet metal, metal tubes, or thin metal plates.

Moreover, fiber laser cutting excels at dealing with those exact types of materials. Laser-cutting machines vary based on the laser beams&#; power output, the machine&#;s size, and automation capabilities.

Higher beam quality is necessary for precision cutting. Hence high, quality lenses should be used and cleaned regularly.

Laser Engraving

Fiber lasers can quickly and accurately carve letters and complex designs into products that will last as long as the product is in use.

A major use case of laser engraving comes from combining CNC laser systems with design software to allow users to create detailed and complex patterns on any number of surfaces.

Laser Marking

Low-power fiber lasers are excellent options for marking components and products. They can quickly impart product details and safety instructions onto a component with high precision and clarity.

Laser marking is often used to draw company logos and brandings onto the final product.

Large-scale factories use fiber laser markers to impart serial numbers and batch numbers into small components such as memory chips, PCBs, and car chassis.

Laser Welding

Fiber laser welding is a high-precision welding technique used to join two thinner sheets of material with minimal weld marks. Additionally, it is possible to weld plastics using low-power or pulsed lasers.

Laser welding is more expensive than traditional TIGor MIG welding and is typically reserved for specialized applications like microscopic welds, precious metal welding, etc.

Laser welding is an excellent alternative to other sheet metal joining methods like rivets as it produces a more flush finish. Similarly, laser welding is preferred for joining non-metals when air-tight joints are required, and glue (or adhesives) is not a viable option.

Laser Cleaning

Fiber lasers are also used for cleaning up the edges and surfaces of metals. Rusted iron pieces can be cleaned using a fiber laser in a few seconds compared to sanding. Laser cleaning also yields a better surface finish.

Lasers can also clean up weld marks and metal burrs from other manufacturing processes. Laser cleaning is less common in general manufacturing due to its higher initial cost.

Cleaning is primarily concerned with laser power and consistency. Beam quality and focus are secondary factors for this process.

Fiber Lasers vs. CO2 Lasers vs. Nd: YAG Lasers

So far, in this article, we have only focused on fiber lasers. However, there are two more laser systems available right now that are popular and, in some cases, better than the fiber option.

CO2 predates fiber lasers by half a century and is a tested and trusted option. Nd: YAG is similar to fiber lasers and a somewhat newer technology that is still being researched. This section compares the three technologies and highlights their respective advantages.

Technology

  • CO2 is an older laser technology that uses high-voltage electric current to excite gas molecules, generating photons inside the glass mixture tube. These photons are then amplified into a laser by two outer reflectors.
  • Nd: YAG (neodymium-doped yttrium aluminum garnet) lasers pump light into a neodymium crystal which acts as the laser medium. When you pump light into the crystal, the excited impurities generate photons (stimulated emission).
  • Fiber lasers pump light into an optical fiber cable which acts as a laser medium and amplifies the light internally due to its high refractive index.

Pricing

Laser costs range from a few hundred dollars (USD) all the way up to a million. Gas lasers are the cheapest at $2,000 for a beginner unit, while entry-level fiber and YAG models start around the $15,000 mark.

The initial investment into gas lasers is considerably low, but the maintenance cost can start to add up.

CO2 lasers are best suited for low-volume production runs. In such situations, a lower life span and poor energy efficiency can be justified by the significant reduction in upfront costs.

Size

CO2 lasers are bulkier because of the large and heavy gas mixture tube used for photon generation. As you directly pump light into a fiber and YAG lasers, there is no need for the photon-generating glass tube.

Fiber laser machines occupy less space and maintain a higher beam quality.

Efficiency

The biggest power draw of a laser system is the light source, as it is necessary for amplification.

Since both fiber and YAG lasers use energy-efficient lamps to pump light into the laser medium, they have a higher overall efficiency leading to lower operating costs.

Semiconductor lasers that use diodes have the highest efficiency, upwards of 60% but only at 5-10W of power.

At this range, semiconductor lasers are only helpful for marking and cutting plywood or fabrics.

Life Span

The lifespan of CO2 lasers is the lowest among all laser technologies as the gas mixture tube degrades over time and needs to be replaced after 2,000 hours of operation.

Contrarily, Fiber lasers can operate at their high (peak) power all day and still maintain their long lifespan. Neodymium lasers share a similar lifespan to single-mode fiber lasers.

Reliability

Modern optimizations have led to increased reliability of all laser systems. Generally speaking, a solid-state laser and a gas laser will have the same level of reliability in optimal operating conditions.

However, in hazardous situations like factory floors or chemical processing plants, gas lasers will have lower reliability due to the fragile nature of the glass laser tube.

Material Compatibility

CO2 lasers have the most diverse material compatibility as they can be used on metals, plastics, polymers, wood, and more. They are only limited by highly reflective metal surfaces like bronze or copper, as most of the laser energy is reflected off the surface.

YAG lasers have reasonably high metal material compatibility but are only compatible with some ceramic non-metals.

Fiber lasers are the best of both worlds as they have a near-universal compatibility with metals, including highly reflective surface ones and decent non-metal compatibility.

What Type of Fiber Laser Machine is Best for Your Needs?

Fiber laser machines are a versatile, flexible, and cost-effective solution for small to medium-sized businesses. However, it is crucial to buy a machine that is best suited to your needs.

Especially since fiber laser machines have a higher initial investment cost, choosing a suitable machine for your business can significantly reduce your ROI (return on investment) period.

Here are the major factors you must consider before buying a fiber laser.

Laser Application

Outline your primary use case for a fiber laser. If you primarily work on sheet metal fabrication, getting a fiber laser cutter would be a smart business decision. You benefit from the diverse metal compatibility.

Laser cleaning, marking, and welding machines are uni-task tools that are designed for only one purpose. If you cannot fully utilize these machines on a regular basis, then it&#;s best to avoid them.

Machine Size

Although fiber laser machines are small and compact, they still need ample breathing room.

You should have enough clearance around the machine for good airflow so the laser doesn&#;t overheat.

Additionally, you should have enough roaming space so someone doesn&#;t accidentally bump into the machine while it&#;s operational.

You must also consider decent ventilation when cutting plastics or certain hazardous materials that can generate dangerous fumes.

Laser Power

High-power fiber lasers are mostly reserved for cutting thick blocks of metal. Most industries won&#;t benefit from a 10kW solid-state laser.

Laser marking requires the least amount of power, while engraving, cleaning, and cutting will require varying levels of power based on operating conditions.

Avoid high-power lasers if they don&#;t provide significant benefits to your business.

Cost Overtime

A solid-state laser, like a fiber one, will generally cost more at the initial purchase than a CO2 one.

However, fiber lasers have lower operating costs due to their excellent efficiency, even when hitting high-power targets.

Fiber lasers are also considered maintenance-free because of their exceptionally long lifespan.

Operating Mode

Lasers can operate in two modes depending on the application.

  • Continuous Wave Mode &#; In this mode, the photons will exit the machine in a continuous wave, and the laser bombards the surface of the workpiece non-stop. Continuous wave operation can also lead to burn marks on the edges of the workpiece.
  • Pulse Mode &#; In this mode, the photons exit the machine in short bursts called pulses. Pulsed fiber lasers shoot less energy into the workpiece and reduce the chance of unwanted melting or warping. The pulse durations of the laser determine the pulse energy of a laser. Longer durations will result in more energy output.

Production Capacity

Most lasers utilize a stationary work bed. The size of the bed limits the production capacity of fiber laser machines.

A larger bed size would be necessary for larger businesses that need quick turnaround times, but it won&#;t be viable for mass production.

Aside from bed size, some fiber laser cutters utilize a coil feed system.

Here, the main fiber laser body is attached to a sheet metal decoiler that continuously feeds metal to the machine.

Coil-fed laser systems are typically reserved for high-volume and low-complexity production runs.

If you are looking for more details, kindly visit Single-platform Fiber Laser Cutting Machine.

Conclusion

Fiber laser systems started as an unverifiable theory in the mind of Einstein and slowly grew into one of the most innovative modern tools today. These lasers are versatile tools that are a crucial part of several industries, including metalwork, robotics, surgery, and more. Highly regarded for their small footprint and efficiency, fiber laser machines are now more affordable than ever before.

Furthermore, the broad material compatibility of fiber laser systems has given them an edge over other metal fabrication processes.

Get a High-Quality Fiber Laser Machine Today!

Baison is a long-term manufacturer of precision laser cutting machines. Our best-in-class fiber laser systems are shipped globally to over 100 countries across the globe.

We offer value-added services like pre-purchase application evaluation and a thorough operator training program.

Our catalog includes powerful and robust Fiber and CO2 laser machines.

A successful business needs quality tools. Get the Best Fiber Laser Machine Today!

Top 10 Best Fiber Laser Cutters for Metal In

Top 10 Best Fiber Laser Cutters for Metal In

Every metalworker strives for precision and craves innovation. As we enter the new year of , higher-end laser cutting technology and processes allow laser metal cutters to be more creative. Whether you are an experienced craftsman in the custom business or an avid enthusiast exploring the art of metal fabrication, finding the perfect metal cutting tool is an adventure filled with excitement and anticipation.

Join us to discover the 10 best metal laser cutting machines of , where each machine is more than just a piece of equipment &#; it's a great partner to start or upgrade your business. Laser metal cutting machines are versatile and ubiquitous, from home use to small business, as well as industrial manufacturing. Every complex design and precise cut is inseparable from the creator's inspiration and the accuracy of the machine, which allows unlimited creativity in metalworking.


In this article, we'll take a deep dive into the top 10 most popular fiber laser metal cutting machines of . Every machine we list is a combination of quality and performance for metal fabrication, whether for the crafting hobbyist or the metal fabricator. So, let's explore these metal cutting tools that are advancing the possibilities of metalworking and empowering creators around the world.

#1 ST-FC Mini Laser Metal Jewelry Cutter By STYLECNC

ST-FC

Crafting exquisite metal jewelry demands more than just skill - it requires precision and finesse. That's where the ST-FC mini laser metal cutter steps in, poised to revolutionize your creative process with its unrivaled precision and versatility.

With a compact table size of 300mm x 300mm, this mini laser cutter packs a powerful punch, making it the perfect addition to your home workshop or studio. But don't let its size fool you - this machine comes with a cutting-edge JPT laser source, available in W, W, or W options, ensuring that every cut is executed with the utmost precision and efficiency.

The ST-FC mini metal laser cutter delivers smooth and clean cuts with a level of detail that exceeds expectations. Its versatility extends beyond traditional metals like brass, copper and stainless steel, allowing you to cut through silver and gold with ease.

If you're in search of the best precision laser cutting machine for crafting personalized metal jewelry, look no further than the ST-FC by STYLECNC. With its compact size, powerful laser source, and user-friendly interface, it's the perfect tool to elevate your craft and unlock endless possibilities in metalworking.

#2 ST-FC Entry-Level Small Metal Laser Cutter Machine

ST-FC

For small businesses and aspiring entrepreneurs, venturing into the world of metal fabrication can be daunting. That's why the ST-FC by STYLECNC is here to bridge the gap, offering a compact yet powerful solution designed specifically for beginners.

At the heart of this entry-level machine lies a fiber laser generator sourced from industry leaders such as Raycus, IPG, MAX, or RECI. Available in W, W, or W power options, this laser cutter provides the perfect balance of power and precision to tackle a variety of cutting tasks with ease.

Whether you're cutting metal signs, tags, logos, letters, or even jewelry, the ST-FC delivers exceptional results with its fully enclosed design and environmental-friendly operation. Say goodbye to cumbersome setups and hazardous working environments - this machine is engineered for safety and efficiency, allowing you to focus on unleashing your creativity without compromise.

So, if you're ready to take your first steps into the world of metal fabrication, look no further than the ST-FC by STYLECNC. With its compact design, powerful laser source, and beginner-friendly features, it's the perfect tool to kickstart your journey towards professional precision and craftsmanship

#3 ST-FCC Industrial Sheet Metal Laser Cutting Machine (5' x 10')

ST-FCC

Imagine a machine that seamlessly combines power and precision, with a laser source sourced from industry giants like Raycus, IPG, or MAX. With power options ranging from W to a staggering W, the ST-FCC isn't just a tool - it's a force to be reckoned with, capable of cutting through metal sheets with unparalleled speed and accuracy.

But what truly sets the ST-FCC apart is its unwavering commitment to innovation and user-centric design. Equipped with a Swiss Raytool Brand Automatic Focus Laser Cutting Head and driven by the intuitive Cypcut Control System, this machine puts precision at your fingertips, allowing you to bring even the most intricate designs to life with ease.

Yet, precision is just the beginning. With features like the Gear-Rack Transmission System and Big Torque Japanese Yaskawa Drive Motors, the ST-FCC offers versatility that knows no bounds. Whether you're crafting intricate designs or fabricating structural components, this machine ensures that every project is executed with unmatched efficiency and quality.

Moreover, with optional upgrades like the Auto Feeding System and Rotary Attachment, the ST-FCC opens up a world of possibilities for creativity and customization. From personalized metal signs to decorative panels and beyond, this machine empowers you to unleash your creativity and take your metalworking to new heights.

#4 ST-FCE Affordable Fiber Laser Cutting Machine

ST-FCE

This top-rated machine combines cutting-edge technology with budget-friendly pricing, offering a solution that revolutionizes metalworking for businesses and hobbyists alike.

Equipped with a powerful laser source from industry leaders like RECI, Raycus, IPG, or MAX, the ST-FCE delivers exceptional performance with power options ranging from W to W. This versatility allows you to work with a wide range of materials, including steel, titanium, aluminum, brass, copper, alloy, gold, silver, and iron, ensuring that you can tackle any project with ease.

Despite its affordability, the ST-FCE doesn't compromise on quality or features. With an Au3tech laser cutting head and a Taiwan Delta Servo Motor, this machine delivers precise cuts and consistent performance, guaranteeing that your projects meet the highest standards of excellence.

Additionally, the ST-FCE comes with advanced features such as an automatic oil lubrication system, an iPad design screen with Au3tech control system, and easy-to-operate buttons for seamless operation. Its multi-purpose design allows for both sheet metal and metal tube/pipe cutting, providing unmatched flexibility to meet your diverse fabrication needs.

It's a game-changer for anyone looking to maximize productivity without breaking the bank. Whether you're a small business owner seeking to streamline your production process or a hobbyist eager to explore new possibilities in metalworking, the ST-FCE is the perfect choice. Experience precision metal fabrication made affordable with the ST- FCE from STYLECNC.

#5 ST-FCLC Fiber & CO2 Combo Laser Cutting Machine

ST-FCLC

Step into a new era of laser cutting with the ST-FCLC hybrid laser cutting machine from STYLECNC. This cutting-edge solution brings together the power of fiber and CO2 laser systems, offering unmatched versatility and precision for both metal and non-metal materials.

Crafted to deliver exceptional performance, the ST-FCLC seamlessly integrates a W fiber laser metal cutting system with a 150W CO2 laser system. With laser sources from top brands like Raycus, IPG, MAX, RECI, and YONGLI, this machine ensures superior cutting quality across a wide range of materials.

Here's why the ST-FCLC stands out:

Versatile Cutting Capabilities

Whether you're working with metals such as steel, aluminum, brass, and iron, or non-metals like wood, plastic, acrylic, and fabric, this machine handles it all with ease.

Space-Saving Design

By combining fiber and CO2 laser systems into one compact machine, the ST-FCLC optimizes workshop space, allowing you to make the most of your working area.

Precision Performance

With servo motor and ball-screw transmission, this machine delivers precise cuts with a repeat accuracy of up to 0.02mm, ensuring consistent results every time.

With its advanced features and cutting-edge technology, the ST-FCLC is the ultimate solution for businesses seeking versatility and performance in laser cutting. Experience the future of laser cutting with the ST-FCLC from STYLECNC.

#6 ST-FC 4x8 Fiber Laser Stainless Steel Cutting Machine

ST-FC

The ST-FC is the most popular metal laser cutting machine with 4x8 table size that challenges this notion, offering a revolutionary blend of accuracy and cost-effectiveness.

Equipped with a powerful W fiber laser power supply, this machine is designed to effortlessly slice through a variety of metals, including aluminum, stainless steel, carbon steel, copper, and brass.

So, what sets the ST-FC apart from other metal cutting solutions?

Affordable Excellence

Designed with small businesses in mind, the ST-FC offers a cost-effective entry point into the world of metal fabrication, without sacrificing precision or performance.

Space-Saving Design

With its compact structure and small footprint, this machine maximizes floor space in your workshop, allowing you to optimize your workspace and boost productivity.

Precision Performance

Featuring high-precision servo motors, lead screws, and guide ways, the ST-FC ensures accuracy and reliability with every cut, delivering flawless results time and time again.

From automotive components to aerospace parts, the ST-FC opens up a world of possibilities in metal fabrication. Experience the future of metal cutting with the ST-FC 4x8 fiber laser metal cutting machine from STYLECNC - it's time to elevate your business without breaking the bank.

#7 ST-FC60M Fiber Laser Tube Cutting Machine

ST-FC60M

With a reputation for excellence and a commitment to quality, STYLECNC introduces the ST-FC60M - a laser tube cutting machine designed to revolutionize the way we shape and manipulate metal tubing. Boasting a range of fiber laser

power options, including W, W, W, and W, this machine combines power and precision to deliver unparalleled results.

Craftsmanship Redefined

At its core lies a powerful laser source from industry leaders such as Raycus, IPG, MAX, and RECI. This cutting-edge technology enables the ST-FC60M to effortlessly cut through square and round tubes, rectangular and oval pipes, and even special metal tubing with unmatched precision and efficiency.

Seamless Automation - Enhancing Productivity And Efficiency

Equipped with state-of-the-art CNC technology, the ST-FC60M is an automatic tube cutting system that streamlines the manufacturing process. Its intuitive controls and user-friendly interface allow operators to program shapes, outlines, and profiles with ease, maximizing productivity and minimizing downtime.

#8 ST-FCMB Automatic Coil Fed Laser Blanking Line & Cutting System

ST-FCMB

One of the hallmark features of the ST-FCMB is its unmatched flexibility. Unlike traditional press lines, this system enables effortless changes to geometry, eliminating the need for costly bending tooling and setup operations. Manufacturers can seamlessly adapt to evolving requirements, enhancing agility and reducing overhead costs.

Intelligent Software For Maximum Material Utilization

Harnessing the power of intelligent software, the ST-FCMB suggests optimal nesting and cutting strategies, ensuring the highest material utilization and efficient waste management. Components seamlessly integrate into the workflow, eliminating scrap skeletons and optimizing production efficiency.

Tackling A Spectrum Of Materials And Applications

From carbon steel to titanium, the ST-FCMB is equipped to handle a diverse range of materials with precision and ease. Its versatility makes it ideal for a multitude of applications, spanning HVAC ductwork, automotive components, machinery parts, and beyond, offering unrivaled adaptability and performance.

With its automatic coil feeding system and laser blanking capabilities, the ST-FCMB is engineered to meet the demands of modern metal fabrication. Seamlessly integrated with storage systems and other machinery, it enhances productivity, profitability, and future-readiness in the industry.

#9 ST-FCGAR Dual-Purpose Fiber Laser Cutter for Metal

ST-FCGAR

With the ST-FCGAR by your side, say goodbye to limitations and hello to endless creativity. This versatile machine effortlessly switches between cutting metal sheets and tubes, allowing you to explore a world of possibilities. Whether you're working with steel, aluminum, copper, or brass, this dual-purpose laser cutter lets you bring your wildest ideas to life with unmatched precision.

Who said you can't have it all? With the ST-FCGAR's dual working platforms, you can keep the creative juices flowing without skipping a beat. While one platform goes full throttle on cutting, the other gears up for the next task, ensuring a seamless workflow that's as smooth as silk. Say goodbye to downtime and hello to non-stop productivity!

Tube Cutting Brilliance: Crafting Curves And Contours With Ease

With specialized capabilities for tube cutting, the ST-FCGAR is your go-to companion for crafting curves and contours with ease. Whether it's round, square, or anything in between, this machine handles tube cutting like a boss, giving you the freedom to let your imagination run wild and create intricate designs that dazzle and delight.

Safety First, Fun Always: A Clean And Secure Workshop Environment

Safety is no joke when it comes to metalworking, and the ST-FCGAR takes it seriously. With its fully enclosed cover, this machine not only keeps you safe from flying sparks and debris but also ensures a clean and secure working environment. So go ahead, crank up the creativity, and let the sparks fly - safely and securely!

All in all, ST-FCGAR is the best laser cutter for metal in the world, both in terms of features and cost, and is worth buying for every need.

#10 ST-18R 3D Fiber Laser Metal Cutting Robot

ST-18R

Gone are the days of traditional flat cutting limitations. With the ST-18R, you can explore the realms of three-dimensional metal cutting like never before. Its advanced robotic arm, coupled with a high-powered fiber laser source, empowers you to bring even the most intricate designs to life with unmatched precision and accuracy. From complex curves to dynamic angles, the ST-18R opens up a world of possibilities for creative expression.

Flexibility Redefined: Adapt To Any Challenge

Versatility is the name of the game with the ST-18R. Thanks to its agile 5-axis design, this machine effortlessly navigates through multi-dimensional surfaces, allowing you to tackle a wide range of cutting tasks with ease. Whether you're working on automotive components, aerospace parts, or architectural structures, the ST-18R adapts to the unique requirements of each project, ensuring flawless results every time.

Smart Technology: Efficiency At Its Core

With advanced control systems and intuitive software algorithms, this machine optimizes every aspect of production, from material handling to toolpath planning. The result? Faster turnaround times, reduced waste, and unparalleled productivity, all with minimal human intervention.

Thickness & Speed

A fiber laser cutter machine can easily cut through various thicknesses of different types of metals. Higher power options can result in higher cutting thicknesses and speeds.

&#; The low-power lasers can cut through stainless steel and aluminum up to 10mm, carbon steel and mild steel up to 20mm thick, brass and copper up to 8mm at maximum speeds of over 45 meters per minute.

&#; The medium-power lasers is able to cutting carbon steel and tool steel up to 25mm thick, aluminum and stainless steel

up to 16mm, copper and brass up to 10mm at max speeds in excess of 60m/min.

&#; The high-power lasers are capable of cutting through metals from less than 1mm to over 200mm at speeds from 0.05m/min to 120m/min.

To check more detailed cutting parameters, please refer to:

How Fast And Thick Can Fiber Lasers Cut Through Metal?

Cost & Pricing

As of , purchasing a brand-new metal laser cutter can cost you anywhere from $13,800 to $,000, and the average starting price for a fiber laser metal cutting machine is around $22,800. However, depending on its features, powers, and table sizes, you may spend more or less than that. The cheapest sheet metal cutters starts at $14,200, the professional CNC laser tube cutting systems range from $41,000 to $117,500, the multi-purpose sheet metal & pipe cutting machines can set you back $60,000, the lowest-priced fiber laser metal cutting robot is priced at $4,.

The average cost for each size option is as follows:

&#; Mini-Sized (Compact) Options: $16,500.

&#; Small-Sized Options: $18,700.

&#; Medium-Sized Options: $31,200.

&#; Full-Sized Options: $39,800.

The price range for each power option is listed below:

&#; Low-Power (W, W, W) Options: $11,500 - $60,000.

&#; Medium-Power (W, W) Options: $36,000 - $80,000.

&#; High-Power (W, W, W, W, W) Options: $85,000 - $,000.

Conclusion

All in all, the future of CNC and laser cutting technology is endless, offering countless options to match every need and budget, from the precision of sheet metal laser cutters to the versatility of dual-purpose sheet metal and tube laser cutting systems, as well as the smart automation of 3D laser cutting robots, each machine brings its own unique features and advantages.

Whether you're cutting sheet metal, tubing or 3D parts, there's a CNC laser cutting solution to meet your specific requirements, from affordable options like the ST-FC - the cheapest fiber laser metal cutter with the most popular 4x8 table size, to high-end models like the ST-18R robotic laser metal cutting machine. In this growing market, there's always something for everyone.

FAQs

What is a fiber laser cutting machine?

Fiber laser cutting machine is a professional and precise metal cutting tool that uses the heat energy by the laser beam to act on the surface of the metal, vaporize or melt the material, blow away the residue with the working gas, and use a CNC controller to drive X, Y, and Z axes to move up, down, left and right along the tool path at the same time, creating clean and smooth cuts.

Is it hard to cut metal with fiber laser?

Fiber lasers can easily cut through a variety of metal materials, from softer copper to harder stainless steel, as well as some highly reflective metals such as aluminum, gold and silver.

How thick of metal can a laser cut?

Lasers can cut various metals with thicknesses ranging from less than 1 mm to more than 200 mm. The higher the power, the thicker the metal cut.

How fast can fiber laser cut metal?

Fiber lasers are able to cut through metals at speeds ranging from 0.05m/min to 120m/min. The higher the power, the faster the cutting speed.

How much does a laser metal cutter cost?

Most entry-level laser metal cutter starts at $13,800, while some high-end models can cost as much as $,000, depending on their powers, features, and table sizes.

Where can I buy an affordable metal laser cutter?

You can either shop online or pick up in store. No matter where to buy, you should choose a CNC laser manufacturer or dealer that offers after-sales service and support while paying attention to machine quality and price.

Post Your Review

1 to 5-star rating

5 stars 4 stars 3 stars 2 stars 1 star

Share Your Thoughts And Feelings With Others

Review Title

Your Name

Your

Your Review

Guest Post

Captcha

For more Single Table Fiber Laser Cutting Machineinformation, please contact us. We will provide professional answers.

Comments

0